
Learn CUDA in
an Afternoon

Alan Gray

EPCC

The University of Edinburgh

Overview

•  Introduction to CUDA

•  Practical Exercise 1: Getting started with CUDA

•  GPU Optimisation

•  Practical Exercise 2: Optimising a CUDA
Application

 2

Overview

•  Introduction to CUDA

•  Practical Exercise 1: Getting started with CUDA

•  GPU Optimisation

•  Practical Exercise 2: Optimising a CUDA
Application

 3

Introduction
•  Graphics Processing Units (GPUs) offer higher

performance that CPUs
–  More of the silicon on the chip is dedicated to computation:

many cores in each GPU chip
–  Graphics memory (GDRAM) has higher bandwidth than the

DRAM memory used by CPUs

•  GPUs can not be used alone, but must be used in
combination with a CPU
–  GPUs accelerate those computationally demanding sections of

code (which we call kernels).
–  Kernels are decomposed to run in parallel on the multiple

cores

•  The CPU and GPU each have their own memory
spaces

4

CPU GPUBus

Main program
code

Key kernel
code

5

Memory	

 Memory	

NVIDIA CUDA

•  Traditional languages alone are not sufficient for
programming GPUs

•  CUDA is an extension to C/C++ that allows
programing of NVIDIA GPUs
–  language extensions for defining kernels
–  API functions for memory management

6

Stream Computing

•  Data set decomposed into a stream of elements
•  A single computational function operates on each element

–  “thread” defined as execution of kernel on one data element

•  Multiple cores can process multiple elements in parallel
–  i.e. many threads running in parallel

•  Suitable for data-parallel problems

7

Hardware

CPU GPUBus

Main program
code

Key kernel
code

SMGPU

Shared memory

SM SM

SM SM

Memory	

Memory	

8

SMGPU

Shared memory

SM SM

SM SM

9

•  NVIDIA GPUs have a 2-level hierarchy:
–  Multiple Streaming Multiprocessors (SMs), each with multiple cores

•  The number of SMs, and cores per SM, varies across
generations

•  In CUDA, this is abstracted as Grid of Thread
Blocks
–  The multiple blocks in a grid map onto the multiple SMs

–  Each block in a grid contains multiple threads, mapping onto the
cores in an SM

•  We don’t need to know the exact details of the
hardware (number of SMs, cores per SM).
–  Instead, oversubscribe, and system will perform

scheduling automatically
– Use more blocks than SMs, and more threads than cores

–  Same code will be portable and efficient across different
GPU versions.

10

CUDA dim3 type

•  CUDA introduces a new dim3 type
–  Simply contains a collection of 3 integers, corresponding

to each of X,Y and Z directions.

dim3 my_xyz_values(xvalue,yvalue,zvalue);

11

•  X component can be accessed as follows:

my_xyz_values.x

And similar for Y and Z

•  E.g. for
dim3 my_xyz_values(6,4,12);

then my_xyz_values.z has value 12

12

13

Analogy

•  You check in to the hotel, as do your classmates
–  Rooms allocated in order

•  Receptionist realises hotel is less than half full
–  Decides you should all move from your room number i to

room number 2i
–  so that no-one has a neighbour to disturb them

14

•  Serial Solution:
–  Receptionist works out each new number in turn

15

•  Parallel Solution:

16

“Everybody: check your room number. Multiply it by 2, and
move to that room.”

•  Serial solution:

17

for (i=0;i<N;i++){
 result[i] = 2*i;
}

•  We can parallelise by assigning each iteration to a separate
CUDA thread.

CUDA C Example

18

•  Replace loop with function
•  Add __global__ specifier

•  To specify this function is to form a GPU kernel

•  Use internal CUDA variables to specify array indices
•  threadIdx.x is an internal variable unique to each thread in a

block.

•  X component of dim3 type. Since our problem is 1D, we are not
using the Y or Z components (more later)

__global__ void myKernel(int *result)
{
 int i = threadIdx.x;
 result[i] = 2*i;
}

CUDA C Example

19

•  And launch this kernel by calling the function

•  on multiple CUDA threads using <<<…>>> syntax

dim3 blocksPerGrid(1,1,1); //use only one block
dim3 threadsPerBlock(N,1,1); //use N threads in the block

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);

CUDA Example

•  The previous example only uses 1 block, i.e. only 1 SM on
the GPU, so performance will be very poor. In practice, we
need to use multiple blocks to utilise all SMs, e.g.:

20

__global__ void myKernel(int *result)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 result[i] = 2*i;
}

...
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock(256,1,1);

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);
...

 •  We have chosen to use 256 threads per block, which is
typically a good number (see practical).

CUDA C Example

•  More realistic 1D example: vector addition

21

__global__ void vectorAdd(float *a, float *b, float *c)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 c[i] = a[i] + b[i];
}

...
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock(256,1,1);

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);
...

CUDA C Internal Variables

For a 1D decomposition (e.g. the previous examples)

• blockDim.x: Number of threads per block
–  Takes value 256 in previous example

• threadIdx.x:unique to each thread in a block
–  Ranges from 0 to 255 in previous example

• blockIdx.x: Unique to every block in the grid
–  Ranges from 0 to (N/256 - 1) in previous example

22

2D Example

23

•  2D or 3D CUDA decompositions also possible, e.g. for
matrix addition (2D):

__global__ void matrixAdd(float a[N][N], float b[N][N], float c[N][N])
{

 int j = blockIdx.x * blockDim.x + threadIdx.x;

 int i = blockIdx.y * blockDim.y + threadIdx.y;

 c[i][j] = a[i][j] + b[i][j];

}

int main()

{

 dim3 blocksPerGrid(N/16,N/16,1); // (N/16)x(N/16) blocks/grid (2D)

 dim3 threadsPerBlock(16,16,1); // 16x16=256 threads/block (2D)

 matrixAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);

}

Memory Management - allocation

•  The GPU has a separate memory space from the host
CPU

•  Data accessed in kernels must be on GPU memory
•  Need to manage GPU memory and copy data to and

from it explicitly
•  cudaMalloc is used to allocate GPU memory
•  cudaFree releases it again
 float *a;

 cudaMalloc(&a, N*sizeof(float));

 …

 cudaFree(a);

24

Memory Management - cudaMemcpy
•  Once we've allocated GPU memory, we need to be able to copy data to

and from it

•  cudaMemcpy does this:

cudaMemcpy(array_device, array_host, N*sizeof(float),

 cudaMemcpyHostToDevice);

cudaMemcpy(array_host, array_device, N*sizeof(float),

 cudaMemcpyDeviceToHost);

•  The first argument always corresponds to the destination of the transfer.

•  Transfers between host and device memory are relatively slow and can
become a bottleneck, so should be minimised when possible

25

Synchronisation between host and device

•  Kernel calls are non-blocking. This means that the
host program continues immediately after it calls
the kernel
–  Allows overlap of computation on CPU and GPU

•  Use cudaThreadSynchronize() to wait for
kernel to finish

26

•  Standard cudaMemcpy calls are blocking
–  Non-blocking variants exist

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);
//do work on host (that doesn’t depend on c)
cudaThreadSynchronise(); //wait for kernel to finish

Synchronisation between CUDA threads

•  Within a kernel, to syncronise between threads in the
same block use the syncthreads()call

•  Therefore, threads in the same block can communicate
through memory spaces that they share, e.g. assuming
x local to each thread and array in a shared memory
space

27

•  It is not possible to communicate between different blocks in
a kernel: must instead exit kernel and start a new one

if (threadIdx.x == 0) array[0]=x;
syncthreads();
if (threadIdx.x == 1) x=array[0];

Compiling CUDA Code

•  CUDA code is compiled using nvcc:

 nvcc –o example example.cu

28

Overview

•  Introduction to CUDA

•  Practical Exercise 1: Getting started with CUDA
–  See Practical PDF document

•  GPU Optimisation

•  Practical Exercise 2: Optimising a CUDA
Application

29

Overview

•  Introduction to CUDA

•  Practical Exercise 1: Getting started with CUDA

•  GPU Optimisation

•  Practical Exercise 2: Optimising a CUDA
Application

 30

GPU performance inhibitors

•  Copying data to/from device

•  Device under-utilisation/ GPU memory latency

•  GPU memory bandwidth

•  Code branching

This lecture will address each of these
–  And advise how to maximise performance
–  Concentrating on NVIDIA, but many concepts will be

transferable to e.g. AMD

31

Host – Device Data Copy

•  CPU (host) and GPU (device) have separate
memories.

•  All data read/written on the device must be copied
to/from the device (over PCIe bus).
–  This very expensive

•  Must try to minimise copies
–  Keep data resident on device

– May involve porting more routines to device, even if they are not
computationally expensive

–  Might be quicker to calculate something from scratch on
device instead of copying from host

32

Data copy optimisation example

•  Port inexpensive routine to device and move data copies
outside of loop

Loop over timesteps

 inexpensive_routine_on_host(data_on_host)

 copy data from host to device

 expensive_routine_on_device(data_on_device)

 copy data from device to host

End loop over timesteps

copy data from host to device

Loop over timesteps

 inexpensive_routine_on_device(data_on_device)

 expensive_routine_on_device(data_on_device)

End loop over timesteps

copy data from device to host

 33

Exposing parallelism

•  GPU performance relies on parallel use of many
threads
–  Degree of parallelism much higher than a CPU

•  Effort must be made to expose as much parallelism
as possible within application
–  May involve rewriting/refactoring

•  If significant sections of code remain serial,
effectiveness of GPU acceleration will be limited
(Amdahl’s law)

34

Occupancy and Memory Latency hiding

•  Programmer decomposes loops in code to threads
–  Obviously, there must be at least as many total threads

as cores, otherwise cores will be left idle.

•  For best performance, actually want

 #threads >> #cores

•  Accesses to GPU memory have several hundred
cycles latency
–  When a thread stalls waiting for data, if another thread

can switch in this latency can be hidden.

•  NVIDIA GPUs have very fast thread switching, and
support many concurrent threads

35

Exposing parallelism example
Loop over i from 1 to 512

 Loop over j from 1 to 512

 independent iteration

Calc i from thread/block ID

 Loop over j from 1 to 512

 independent iteration

Calc i & j from thread/block ID

 independent iteration

Original code	

1D decomposition	

 2D decomposition	

512 threads	

 262,144 threads	

✖	

 ✔	

36

Memory coalescing

•  GPUs have high peak memory bandwidth

•  Maximum memory bandwidth is only achieved
when data is accessed for multiple threads in a
single transaction: memory coalescing

•  To achieve this, ensure that consecutive threads
access consecutive memory locations

•  Otherwise, memory accesses are serialised,
significantly degrading performance
–  Adapting code to allow coalescing can dramatically

improve performance
37

Memory coalescing example

•  consecutive threads are those with consecutive
threadIdx.x values

•  Do consecutive threads access consecutive memory
locations?

 index = blockIdx.x*blockDim.x + threadIdx.x;

 output[index] = 2*input[index];

Coalesced. Consecutive threadIdx values
correspond to consecutive index values	

✔	

38

Memory coalescing examples

•  Do consecutive threads read consecutive memory
locations?

•  In C, outermost index runs fastest: j here
 i = blockIdx.x*blockDim.x + threadIdx.x;

 for (j=0; j<N; j++)

 output[i][j]=2*input[i][j];

 j = blockIdx.x*blockDim.x + threadIdx.x;

 for (i=0; i<N; i++)

 output[i][j]=2*input[i][j];

✖	

Not Coalesced. Consecutive threadIdx.x
corresponds to consecutive i values	

	

Coalesced. Consecutive threadIdx.x
corresponds to consecutive j values	

	

✔	

39

Memory coalescing examples

•  What about when using 2D or 3D CUDA
decompositions?
–  Same procedure. X component of threadIdx is always

that which increments with consecutive threads
–  E.g., for matrix addition, coalescing achieved as follows:

 int j = blockIdx.x * blockDim.x + threadIdx.x;
 int i = blockIdx.y * blockDim.y + threadIdx.y;

 c[i][j] = a[i][j] + b[i][j];

40

Code Branching

•  On NVIDIA GPUs, there are less instruction scheduling
units than cores

•  Threads are scheduled in groups of 32, called a warp

•  Threads within a warp must execute the same
instruction in lock-step (on different data elements)

•  The CUDA programming allows branching, but this
results in all cores following all branches
–  With only the required results saved
–  This is obviously suboptimal

•  Must avoid intra-warp branching wherever possible
(especially in key computational sections)

41

Branching example

•  E.g you want to split your threads into 2 groups:
i = blockIdx.x*blockDim.x + threadIdx.x;
if (i%2 == 0)

 …

else

 …

i = blockIdx.x*blockDim.x + threadIdx.x;

if ((i/32)%2 == 0)

 …

else

 …

Threads within warp diverge	

 Threads within warp follow same path	

✖	

✔	

42

CUDA Profiling

•  Simply set COMPUTE_PROFILE environment variable
to 1

•  Log file, e.g. cuda_profile_0.log created at runtime:
timing information for kernels and data transfer

•  Possible to output more metrics (cache misses etc)
–  See doc/Compute_Profiler.txt file in main CUDA

installation

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla M1060
CUDA_CONTEXT 1
TIMESTAMPFACTOR fffff6e2e9ee8858
method,gputime,cputime,occupancy
method=[memcpyHtoD] gputime=[37.952] cputime=[86.000]
method=[memcpyHtoD] gputime=[37.376] cputime=[71.000]
method=[memcpyHtoD] gputime=[37.184] cputime=[57.000]
method=[_Z23inverseEdgeDetect1D_colPfS_S_] gputime=[253.536] cputime=[13.00
0] occupancy=[0.250]
...

43

Overview

•  Introduction to CUDA

•  Practical Exercise 1: Getting started with CUDA

•  GPU Optimisation

•  Practical Exercise 2: Optimising a CUDA
Application
–  See Practical PDF document

44

