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Introduction 
•  Graphics Processing Units (GPUs) offer higher 

performance that CPUs 
–  More of the silicon on the chip is dedicated to computation: 

many cores in each GPU chip 
–  Graphics memory (GDRAM) has higher bandwidth than the 

DRAM memory used by CPUs 

•  GPUs can not be used alone, but must be used in 
combination with a CPU 
–  GPUs accelerate those computationally demanding sections of 

code (which we call kernels). 
–  Kernels are decomposed to run in parallel on the multiple 

cores 

•  The CPU and GPU each have their own memory 
spaces 
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NVIDIA CUDA 

•  Traditional languages alone are not sufficient for 
programming GPUs 

•  CUDA is an extension to C/C++ that allows 
programing of NVIDIA GPUs 
–  language extensions for defining kernels  
–  API functions for memory management 
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Stream Computing 

•  Data set decomposed into a stream of elements 
•  A single computational function operates on each element 

–  “thread” defined as execution of kernel on one data element 

•  Multiple cores can process multiple elements in parallel 
–  i.e. many threads running in parallel 

•  Suitable for data-parallel problems 
 

7 



Hardware 

CPU GPUBus

Main program
code
__________
_______
___________
_________

Key kernel
code
_______
__________
____

SMGPU

Shared memory

SM SM

SM SM

Memory	



Memory	



8 



SMGPU

Shared memory

SM SM

SM SM

9 

•  NVIDIA GPUs have a 2-level hierarchy: 
–  Multiple Streaming Multiprocessors (SMs), each with multiple cores 

•  The number of SMs, and cores per SM, varies across 
generations  



•  In CUDA, this is abstracted as Grid of Thread 
Blocks 
–  The multiple blocks in a grid map onto the multiple SMs 

–  Each block in a grid contains multiple threads, mapping onto the 
cores in an SM  

•  We don’t need to know the exact details of the 
hardware (number of SMs, cores per SM). 
–  Instead, oversubscribe, and system will perform 

scheduling automatically 
– Use more blocks than SMs, and more threads than cores 

–  Same code will be portable and efficient across different 
GPU versions. 
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CUDA dim3 type 

•  CUDA introduces a new dim3 type 
–  Simply contains a collection of 3 integers, corresponding 

to each of X,Y and Z directions. 
 
dim3 my_xyz_values(xvalue,yvalue,zvalue); 
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•  X component can be accessed as follows: 

my_xyz_values.x 

And similar for Y and Z 

•  E.g. for 
dim3 my_xyz_values(6,4,12); 

then my_xyz_values.z has value 12 
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Analogy 

•  You check in to the hotel, as do your classmates 
–  Rooms allocated in order 

•  Receptionist realises hotel is less than half full 
–  Decides you should all move from your room number i to 

room number 2i 
–  so that no-one has a neighbour to disturb them 
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•  Serial Solution: 
–  Receptionist works out each new number in turn 
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•  Parallel Solution: 
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“Everybody: check your room number. Multiply it by 2, and 
move to that room.” 



•  Serial solution: 
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for (i=0;i<N;i++){ 
  result[i] = 2*i; 
} 
 

•  We can parallelise by assigning each iteration to a separate 
CUDA thread. 



CUDA C Example 
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•  Replace loop with function 
•  Add __global__ specifier 

•  To specify this function is to form a GPU kernel 

•  Use internal CUDA variables to specify array indices  
•  threadIdx.x is an internal variable unique to each thread in a 

block. 

•  X component of dim3 type. Since our problem is 1D, we are not 
using the Y or Z components (more later) 

 

__global__ void myKernel(int *result) 
{ 
  int i = threadIdx.x; 
  result[i] = 2*i; 
} 



CUDA C Example 
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•  And launch this kernel by calling the function 

•  on multiple CUDA threads using <<<…>>> syntax 

dim3 blocksPerGrid(1,1,1); //use only one block 
dim3 threadsPerBlock(N,1,1); //use N threads in the block 
 
myKernel<<<blocksPerGrid, threadsPerBlock>>>(result); 
 

 



CUDA  Example 

•  The previous example only uses 1 block, i.e. only 1 SM on 
the GPU, so performance will be very poor. In practice, we 
need to use multiple blocks to utilise all SMs, e.g.: 
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__global__ void myKernel(int *result) 
{ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  result[i] = 2*i; 
} 

 
... 
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly 
dim3 threadsPerBlock(256,1,1);  
 
myKernel<<<blocksPerGrid, threadsPerBlock>>>(result); 
... 

 •  We have chosen to use 256 threads per block, which is 
typically a good number (see practical). 



CUDA C Example 

•  More realistic 1D example: vector addition 
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__global__ void vectorAdd(float *a, float *b, float *c) 
{ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  c[i] = a[i] + b[i]; 
} 

 
... 
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly 
dim3 threadsPerBlock(256,1,1);  
 
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c); 
... 

 



CUDA C Internal Variables 

For a 1D decomposition (e.g. the previous examples) 

• blockDim.x: Number of threads per block 
–  Takes value 256 in previous example 

• threadIdx.x:unique to each thread in a block 
–  Ranges from 0 to 255 in previous example 

• blockIdx.x: Unique to every block in the grid 
–  Ranges from 0 to (N/256 - 1) in previous example 
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2D Example 
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•  2D or 3D CUDA decompositions also possible, e.g. for 
matrix addition (2D):   

__global__ void matrixAdd(float a[N][N], float b[N][N], float c[N][N]) 
{ 

  int j = blockIdx.x * blockDim.x + threadIdx.x; 

  int i = blockIdx.y * blockDim.y + threadIdx.y; 

  c[i][j] = a[i][j] + b[i][j]; 

} 

int main() 

{ 

  dim3 blocksPerGrid(N/16,N/16,1); // (N/16)x(N/16) blocks/grid (2D)   

  dim3 threadsPerBlock(16,16,1); // 16x16=256 threads/block (2D)   

  matrixAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c); 

} 

 



Memory Management - allocation 

•  The GPU has a separate memory space from the host 
CPU 

•  Data accessed in kernels must be on GPU memory 
•  Need to manage GPU memory and copy data to and 

from it explicitly 
•  cudaMalloc is used to allocate GPU memory 
•  cudaFree releases it again 
   float *a; 

   cudaMalloc(&a, N*sizeof(float)); 

   … 

   cudaFree(a); 
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Memory Management - cudaMemcpy 
•  Once we've allocated GPU memory, we need to be able to copy data to 

and from it 

•  cudaMemcpy does this: 

 

cudaMemcpy(array_device, array_host, N*sizeof(float), 

 cudaMemcpyHostToDevice); 

cudaMemcpy(array_host, array_device, N*sizeof(float),     

   cudaMemcpyDeviceToHost); 

•  The first argument always corresponds to the destination of the transfer. 

•  Transfers between host and device memory are relatively slow and can 
become a bottleneck, so should be minimised when possible 
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Synchronisation between host and device 

•  Kernel calls are non-blocking. This means that the 
host program continues immediately after it calls 
the kernel  
–  Allows overlap of computation on CPU and GPU 

•  Use cudaThreadSynchronize() to wait for 
kernel to finish 
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•  Standard cudaMemcpy calls are blocking 
–  Non-blocking variants exist 

 
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c); 
//do work on host (that doesn’t depend on c) 
cudaThreadSynchronise(); //wait for kernel to finish 

 



Synchronisation between CUDA threads 

•  Within a kernel, to syncronise between threads in the 
same block use the syncthreads()call 

•  Therefore, threads in the same block can communicate 
through memory spaces that they share, e.g. assuming 
x local to each thread and array in a shared memory 
space 
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•  It is not possible to communicate between different blocks in 
a kernel: must instead exit kernel and start a new one 

if (threadIdx.x == 0) array[0]=x; 
syncthreads(); 
if (threadIdx.x == 1) x=array[0]; 
 



Compiling CUDA Code 

•  CUDA code is compiled using nvcc: 

 nvcc –o example example.cu 
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GPU performance inhibitors 

•  Copying data to/from device 

•  Device under-utilisation/ GPU memory latency 

•  GPU memory bandwidth 

•  Code branching 

This lecture will address each of these 
–  And advise how to maximise performance 
–  Concentrating on NVIDIA, but many concepts will be 

transferable to e.g. AMD 
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Host – Device Data Copy 

•  CPU (host) and GPU (device) have separate 
memories. 

•  All data read/written on the device must be copied 
to/from the device (over PCIe bus). 
–  This very expensive  

•  Must try to minimise copies 
–  Keep data resident on device  

– May involve porting more routines to device, even if they are not 
computationally expensive 

–  Might be quicker to calculate something from scratch on 
device instead of copying from host  
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Data copy optimisation example 

•  Port inexpensive routine to device and move data copies 
outside of loop 

Loop over timesteps 

 inexpensive_routine_on_host(data_on_host) 

 copy data from host to device 

 expensive_routine_on_device(data_on_device) 

 copy data from device to host 

End loop over timesteps 

 
 

copy data from host to device 

Loop over timesteps 

 inexpensive_routine_on_device(data_on_device) 

 expensive_routine_on_device(data_on_device) 

End loop over timesteps 

copy data from device to host 
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Exposing parallelism 

•  GPU performance relies on parallel use of many 
threads 
–  Degree of parallelism much higher than a CPU 

•  Effort must be made to expose as much parallelism 
as possible within application 
–  May involve rewriting/refactoring  

•  If significant sections of code remain serial, 
effectiveness of GPU acceleration will be limited 
(Amdahl’s law) 
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Occupancy and Memory Latency hiding 

•  Programmer decomposes loops in code to threads 
–  Obviously, there must be at least as many total threads 

as cores, otherwise cores will be left idle. 

•  For best performance, actually want   

 #threads >> #cores 

•   Accesses to GPU memory have several hundred 
cycles latency 
–  When a thread stalls waiting for data, if another thread 

can switch in this latency can be hidden. 

•  NVIDIA GPUs have very fast thread switching, and 
support many concurrent threads  
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Exposing parallelism example 
Loop over i from 1 to 512 

 Loop over j from 1 to 512 

  independent iteration 

 
 

Calc i from thread/block ID 

 Loop over j from 1 to 512 

  independent iteration 

 
 

Calc i & j from thread/block ID 

  independent iteration 
 

Original code	



1D decomposition	

 2D decomposition	



512 threads	

  262,144 threads	

✖	

 ✔	
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Memory coalescing 

•  GPUs have high peak memory bandwidth 

•  Maximum memory bandwidth is only achieved 
when data is accessed for multiple threads in a 
single transaction: memory coalescing  

•  To achieve this, ensure that consecutive threads 
access consecutive memory locations  

•  Otherwise, memory accesses are serialised, 
significantly degrading performance 
–  Adapting code to allow coalescing can dramatically 

improve performance 
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Memory coalescing example 

•  consecutive threads are those with consecutive 
threadIdx.x values 

•  Do consecutive threads access consecutive memory 
locations? 

 index = blockIdx.x*blockDim.x + threadIdx.x; 

 output[index] = 2*input[index];   

Coalesced. Consecutive threadIdx values 
correspond to consecutive index values	

✔	
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Memory coalescing examples 

•  Do consecutive threads read consecutive memory 
locations? 

•  In C, outermost index runs fastest: j here 
 i = blockIdx.x*blockDim.x + threadIdx.x; 

 for (j=0; j<N; j++) 

   output[i][j]=2*input[i][j];   

 j = blockIdx.x*blockDim.x + threadIdx.x; 

 for (i=0; i<N; i++) 

   output[i][j]=2*input[i][j];   

✖	

Not Coalesced. Consecutive threadIdx.x 
corresponds to consecutive i values	


	



Coalesced. Consecutive threadIdx.x 
corresponds to consecutive j values	


	



✔	
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Memory coalescing examples 

•  What about when using 2D or 3D CUDA 
decompositions? 
–  Same procedure. X component of threadIdx is always 

that which increments with consecutive threads 
–  E.g., for matrix addition, coalescing achieved as follows:  
 

 int j = blockIdx.x * blockDim.x + threadIdx.x; 
 int i = blockIdx.y * blockDim.y + threadIdx.y; 
 
 c[i][j] = a[i][j] + b[i][j]; 
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Code Branching 

•  On NVIDIA GPUs, there are less instruction scheduling 
units than cores  

•  Threads are scheduled in groups of 32, called a warp 

•  Threads within a warp must execute the same 
instruction in lock-step (on different data elements) 

•  The CUDA programming allows branching, but this 
results in all cores following all branches 
–  With only the required results saved 
–  This is obviously suboptimal 

•  Must avoid intra-warp branching wherever possible 
(especially in key computational sections) 
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Branching example 

•  E.g you want to split your threads into 2 groups:  
i = blockIdx.x*blockDim.x + threadIdx.x; 
if (i%2 == 0) 

 … 

else 

 … 
 

 

i = blockIdx.x*blockDim.x + threadIdx.x; 

if ((i/32)%2 == 0) 

 … 

else 

 … 
 

 

Threads within warp diverge	



 Threads within warp follow same path	



✖	



✔	
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CUDA Profiling 

•  Simply set COMPUTE_PROFILE environment variable 
to 1 

•  Log file, e.g. cuda_profile_0.log created at runtime: 
timing information for kernels and data transfer  

•  Possible to output more metrics (cache misses etc) 
–  See doc/Compute_Profiler.txt file in main CUDA 

installation 

# CUDA_PROFILE_LOG_VERSION 2.0 
# CUDA_DEVICE 0 Tesla M1060 
# CUDA_CONTEXT 1 
# TIMESTAMPFACTOR fffff6e2e9ee8858 
method,gputime,cputime,occupancy 
method=[ memcpyHtoD ] gputime=[ 37.952 ] cputime=[ 86.000 ]  
method=[ memcpyHtoD ] gputime=[ 37.376 ] cputime=[ 71.000 ]  
method=[ memcpyHtoD ] gputime=[ 37.184 ] cputime=[ 57.000 ]  
method=[ _Z23inverseEdgeDetect1D_colPfS_S_ ] gputime=[ 253.536 ] cputime=[ 13.00 
0 ] occupancy=[ 0.250 ]  
... 
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