Learn CUDA In
an Afternoon

Alan Gray
EPCC
The University of Edinburgh

Overview

* |ntroduction to CUDA

* Practical Exercise 1: Getting started with CUDA

* GPU Optimisation

* Practical Exercise 2: Optimising a CUDA
Application

Overview

* |ntroduction to CUDA

* Practical Exercise 1: Getting started with CUDA

* GPU Optimisation

* Practical Exercise 2: Optimising a CUDA
Application

Introduction

* Graphics Processing Units (GPUs) offer higher

performance that CPUs

— More of the silicon on the chip is dedicated to computation:
many cores in each GPU chip

— Graphics memory (GDRAM) has higher bandwidth than the
DRAM memory used by CPUs

* GPUs can not be used alone, but must be used in

combination with a CPU

— GPUs accelerate those computationally demanding sections of
code (which we call kernels).

— Kernels are decomposed to run in parallel on the multiple
cores

* The CPU and GPU each have their own memory
spaces

Memory

CPU

Memory

Bus

Main program
code

GPU

Key kernel
code

NVIDIA CUDA

* Traditional languages alone are not sufficient for
programming GPUs

* CUDA is an extension to C/C++ that allows
programing of NVIDIA GPUs

— language extensions for defining kernels
— API functions for memory management

Stream Computing

VVVVVVYV

YY.Y.Y.Y.Y:

* Data set decomposed into a stream of elements

* A single computational function operates on each element
— “thread” defined as execution of kernel on one data element

* Multiple cores can process multiple elements in parallel
— i.e. many threads running in parallel

e Suitable for data-parallel problems

Hardware

Memory

CPU

SM

Bus

Main program
code

SM

Key kernel
code

SM

Shared memory

GPU SM

SM SM

SM B\K

Shared memory

° NVIDIA GPUs have a 2-level hierarchy:

— Multiple Streaming Multiprocessors (SMs), each with multiple cores

* The number of SMs, and cores per SM, varies across
generations

* In CUDA, this is abstracted as Grid of Thread

Blocks

— The multiple blocks in a grid map onto the multiple SMs

— Each block in a grid contains multiple threads, mapping onto the
cores in an SM

* \WWe don’t need to know the exact details of the

hardware (number of SMs, cores per SM).

— Instead, oversubscribe, and system will perform

scheduling automatically
— Use more blocks than SMs, and more threads than cores

— Same code will be portable and efficient across different
GPU versions.

10

CUDA dim3 type

e CUDA introduces a new dim3 type

— Simply contains a collection of 3 integers, corresponding
to each of X,Y and Z directions.

dim3 my xyz values (xvalue,yvalue,zvalue);

11

e X component can be accessed as follows:
my xXyz values.x
And similar for Y and Z

e E.g. for
dim3 my xyz values(0,4,12);

then my xyz values.z hasvalue 12

12

h-sizn“

3 '\‘_'r‘l “l

‘a

Ll

JL"" i

13

Analogy

°* You check in to the hotel, as do your classmates
— Rooms allocated in order

* Receptionist realises hotel is less than half full

— Decides you should all move from your room number i to
room number 2j

— so that no-one has a neighbour to disturb them

14

* Serial Solution:
— Receptionist works out each new number in turn

15

* Parallel Solution:

“Everybody: check your room number. Multiply it by 2, and
move to that room.”

16

e Serial solution:

for (1=0;i<N;i++) {
result[i] = 2*1i;

}

* We can parallelise by assigning each iteration to a separate
CUDA thread.

17

CUDA C Example

__global void myKernel (Int *result)

{
int 1 = threadldx.x;
resultf[i] = 2*1i;

}

* Replace loop with function
* Add global specifier

* To specify this function is to form a GPU kernel
* Use internal CUDA variables to specify array indices

* threadIdx.x is an internal variable unique to each thread in a
block.

e X component of dim3 type. Since our problem is 1D, we are not
using the Y or Z components (more later)

18

CUDA C Example

* And launch this kernel by calling the function

* on multiple CUDA threads using <<<..>>> syntax

dim3 blocksPerGrid(1l,1,1); //use only one block
dim3 threadsPerBlock(N,1,1); //use N threads in the block

myKernel<<<blocksPerGrid, threadsPerBlock>>> (result);

19

CUDA Example

* The previous example only uses 1 block, i.e. only 1 SM on
the GPU, so performance will be very poor. In practice, we
need to use multiple blocks to utilise all SMs, e.g.:

__global void myKernel (int *result)

{

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
result[i] = 2*1;

}

dim3 blocksPerGrid (N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock (256,1,1);

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);

* We have chosen to use 256 threads per block, which is
typically a good number (see practical).

20

CUDA C Example

* More realistic 1D example: vector addition

__global void vectorAdd(float *a, float *b, float *c)

{
int i = blockIdx.x * blockDim.x + threadIdx.x;

cli] = ali]l + bli];

dim3 blocksPerGrid (N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock (256,1,1);

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);

21

CUDA C Internal Variables

For a 1D decomposition (e.g. the previous examples)

* blockDim. x: Number of threads per block
— Takes value 256 in previous example

* threadIdx.x:unique to each thread in a block
— Ranges from 0 to 255 in previous example

* blockIdx.x: Unique to every block in the grid
— Ranges from 0 to (N/256 - 1) in previous example

22

2D Example

e 2D or 3D CUDA decompositions also possible, e.g. for
matrix addition (2D):

__global void matrixAdd(float a[N][N], float b[N][N], float c[N][N])

int J = blockIdx.x * blockDim.x + threadIldx.x;
int 1 = blockIdx.y * blockDim.y + threadIdx.y;

c(i][J] = alill3] + bIi][J];

int main ()

{
dim3 blocksPerGrid (N/16,N/16,1); // (N/16)x(N/16) blocks/grid (2D)
dim3 threadsPerBlock (16,16,1); // 1l6x16=256 threads/block (2D)
matrixAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);

23

Memory Management - allocation

The GPU has a separate memory space from the host
CPU

Data accessed in kernels must be on GPU memory

Need to manage GPU memory and copy data to and
from it explicitly

cudaMalloc is used to allocate GPU memory
cudaFree releases it again
float *a;

cudaMalloc (&a, N*sizeof (float));

cudafFree (a) ;

24

Memory Management - cudaMemcpy

Once we've allocated GPU memory, we need to be able to copy data to
and from it

cudaMemcpy does this:

cudaMemcpy (array device, array host, N*sizeof (float),

cudaMemcpyHostToDevice) ;

cudaMemcpy (array host, array device, N*sizeof (float),

cudaMemcpyDeviceToHost) ;

The first argument always corresponds to the destination of the transfer.

Transfers between host and device memory are relatively slow and can
become a bottleneck, so should be minimised when possible

25

Synchronisation between host and device

* Kernel calls are non-blocking. This means that the

host program continues immediately after it calls
the kernel

— Allows overlap of computation on CPU and GPU

* Use cudaThreadSynchronize () to wait for
kernel to finish

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);
//do work on host (that doesn’t depend on c)
cudaThreadSynchronise(); //wait for kernel to finish

e Standard cudaMemcpy calls are blocking
— Non-blocking variants exist

26

Synchronisation between CUDA threads

* Within a kernel, to syncronise between threads in the
same block use the syncthreads () call

* Therefore, threads in the same block can communicate
through memory spaces that they share, e.g. assuming
x local to each thread and array in a shared memory
space

if (threadldx.x == 0) array[0]=x;
syncthreads () ;
1f (threadldx.x == 1) x=array[0];

* |tis not possible to communicate between different blocks in
a kernel: must instead exit kernel and start a new one

27

Compiling CUDA Code

* CUDA code is compiled using nvcc:

nvcc —o0 example example.cu

28

* Practical Exercise 1: Getting started with CUDA

— See Practical PDF document

29

Overview

* |ntroduction to CUDA

* Practical Exercise 1: Getting started with CUDA

* GPU Optimisation

* Practical Exercise 2: Optimising a CUDA
Application

30

GPU performance inhibitors

* Copying data to/from device

* Device under-utilisation/ GPU memory latency
* GPU memory bandwidth
* Code branching

This lecture will address each of these

— And advise how to maximise performance

— Concentrating on NVIDIA, but many concepts will be
transferable to e.g. AMD

31

Host — Device Data Copy

* CPU (host) and GPU (device) have separate
memories.

* All data read/written on the device must be copied

to/from the device (over PCle bus).
— This very expensive

* Must try to minimise copies

— Keep data resident on device

— May involve porting more routines to device, even if they are not
computationally expensive

— Might be quicker to calculate something from scratch on
device instead of copying from host

32

Data copy optimisation example

Loop over timesteps
inexpensive routine on host (data on host)
copy data from host to device
expensive routine on device (data on device)
copy data from device to host

End loop over timesteps

* Port inexpensive routine to device and move data copies
outside of loop

copy data from host to device
Loop over timesteps
inexpensive routine on device (data on device)
expensive routine on device (data on device)
End loop over timesteps

copy data from device to host

33

Exposing parallelism

GPU performance relies on parallel use of many

threads
— Degree of parallelism much higher than a CPU

Effort must be made to expose as much parallelism

as possible within application
— May involve rewriting/refactoring

If significant sections of code remain serial,
effectiveness of GPU acceleration will be limited
(Amdahl’'s law)

34

Occupancy and Memory Latency hiding

* Programmer decomposes loops in code to threads

— Obviously, there must be at least as many total threads
as cores, otherwise cores will be left idle.

* For best performance, actually want
#threads >> #cores

* Accesses to GPU memory have several hundred

cycles latency

— When a thread stalls waiting for data, if another thread
can switch in this latency can be hidden.

* NVIDIA GPUs have very fast thread switching, and
support many concurrent threads

35

Exposing parallelism example

Loop over 1 from 1 to 512
Loop over j from 1 to 512

independent iteration

Original code

N

1D decomposition

2D decomposition

Calc 1 from thread/block ID
Loop over j from 1 to 512

independent iteration

Calc i & j from thread/block ID

independent iteration

x 512 threads

V 262,144 threads

Memory coalescing

* GPUs have high peak memory bandwidth

* Maximum memory bandwidth is only achieved
when data is accessed for multiple threads in a
single transaction: memory coalescing

* To achieve this, ensure that consecutive threads
access consecutive memory locations

* Otherwise, memory accesses are serialised,

significantly degrading performance

— Adapting code to allow coalescing can dramatically
improve performance

37

Memory coalescing example

* consecutive threads are those with consecutive
threadIdx.x values

* Do consecutive threads access consecutive memory
locations?

index = blockIdx.x*blockDim.x + threadIdx.x;

output [index] = 2*input[index];

Coalesced. Consecutive threadIdx values
correspond to consecutive index values

38

Memory coalescing examples

Do consecutive threads read consecutive memory
ocations?

* |In C, outermost index runs fastest: § here

i = blockIdx.x*blockDim.x + threadIdx.x;
for (J=0; J<N; Jj++)

output[i] [j]=2*input[i] [J];

Not Coalesced. Consecutive threadIdx. x
corresponds to consecutive i values

J = blockIdx.x*blockDim.x + threadIdx.x;
for (i=0; 1i<N; 1i++)

output[i] [J]=2*input[i] [j];

Coalesced. Consecutive threadIdx.x

corresponds to consecutive j values 29

Memory coalescing examples

* \What about when using 2D or 3D CUDA

decompositions?

— Same procedure. X component of threadIdx is always
that which increments with consecutive threads

— E.g., for matrix addition, coalescing achieved as follows:

int jJ = blockIdx.x * blockDim.x + threadIdx.x;
int 1 = blockIdx.y * blockDim.y + threadlIdx.y;

c(i][3] = ali]l[3] + bIi][3J];

40

Code Branching

On NVIDIA GPUs, there are less instruction scheduling
units than cores

Threads are scheduled in groups of 32, called a warp

Threads within a warp must execute the same
instruction in lock-step (on different data elements)

The CUDA programming allows branching, but this

results in all cores following all branches

— With only the required results saved
— This is obviously suboptimal

Must avoid intra-warp branching wherever possible
(especially in key computational sections)

41

Branching example

* E.g you want to split your threads into 2 groups:

i = blockIdx.x*blockDim.x + threadIdx.x;
if (1%2 == 0)

else

x Threads within warp diverge

i = blockIdx.x*blockDim.x + threadIdx.x;
if ((1/32)%2 == 0)

else

“Threads within warp follow same path

42

CUDA Profiling

* Simply set COMPUTE PROFILE environment variable
to 1

* Logfile, e.g. cuda_profile 0.log created at runtime:
timing information for kernels and data transfer

CUDA PROFILE LOG VERSION 2.0

CUDA DEVICE 0 Tesla M1060

CUDA CONTEXT 1

TIMESTAMPFACTOR fffff6e2e9ee8858

method, gputime, cputime, occupancy

method=[memcpyHtoD] gputime=[37.952] [86.000]

method=[memcpyHtoD] gputime=[37.376] cputime=[71.000]

method=[memcpyHtoD] gputime=[37.184] cputime=[57.000]

method=[Z23inverseEdgeDetectlD colPfS S] gputime=[253.536] cputime=[13.00

0] occupancy=[0.250]

cputime=

* Possible to output more metrics (cache misses etc)

— See doc/Compute Profiler.txt file in main CUDA

installation
43

* Practical Exercise 2: Optimising a CUDA
Application

— See Practical PDF document

44

